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INTRODUCTION

T. J. Rivlin has recently raised the following problem [5]: Characterize those
n-tuples of algebraic polynomials {py,p,,...,pn-1}, With degrees satisfying

degpj z.] (]=0= 1,.--,1’1— 1)5 (1)

for which there exists an x € C([0, 1]) such that the polynomial of best approxi-
mation of degree j to x (in the sense of Cebysev) is p; (j=0,1,...,n — 1). What
is the answer in the particular case n =27

In the present paper we shall consider the following more general problem:
Let {G;} be a sequence of linear subspaces of a normed linear space E.
Characterize those sequences {g,} in E, with g, € G} (k=1,2,...), for which
there exists an x € E such that

8r € Py (%) (k=1,2,..) )]

where Z5(x) denotes the set of all elements of best approximation to x from G,
i.e., the set

{80 € G||x — gof = in(f Ix — g}

We shall devote most of our attention to the cases when

G, cG,=..., 3
or
Gi2G,>..., 4

both in general and in some concrete normed linear spaces; in particular, we
shall give a complete answer to the second question of T. J. Rivlin in C([0,1]).
Finally, we shall also consider the problem of characterizing the sequences of
subspaces {G,} satisfying (3) or (4) and with the following property, which we
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shall call property (A): for every sequence {g;} with g, € G, (k=1,2,...)
there exists an x € E satisfying (2).

Let us mention that the above problems are somewhat analogous to ““‘the
inverse problem of the theory of best approximation” (i.e., the problem of
finding an x € E with prescribed ““best error” values eg,(x) = inf g, [ x - g,
(k=1,2,..)) raised by S. Bernstein [2].

We conclude the introduction with a brief review of some useful notation
and terminology. (All our notation conforms to that of the monograph [6]).
We recall that 7gl(g), where g € G, denotes the set of all y-€ E such that
g € Zs(). A subspace G of E is called a Cebysev subspace if each x € E has a
unique element of best approximation g, <€ G. In this case the mapping
7 X —>= g is called the metric projection of E onto G.

1. SoME RESULTS IN GENERAL NORMED LINEAR SPACES

A solution of the main problem of the Introduction is given by

THEOREM 1. Let {G}} be a sequence of linear subspaces of a normed linear
space E, and let g, € Gy (k = 1,2,...). There exists an x € E satisfying (2) if and
only if there exist elements y, € mg}0) (k = 1,2,...) such that

Su+1 — 8 =DVk+1 — Vk k=1,2,..). (5}

Proof. Assume that there exists an x € E satisfying (2). Put
V=8 —X (k=192>"')' (6)

Then by (2) we have 0 € P, (), ie., y€76H(0) (k=1,2,..)), and by
consecutive subtraction in (6) we obtain (5).

Conversely, assume that there exist elements y, € wgl{0) such that we have
(5). Put

X=8 — )V @
Then by (5) we have

X=g—Y1=8& V2= ®
whence, by 0 € Z4.(»,), we obtain
Ix—gl =y <lye—ge+gl=lx—gl (¢€CGuk=12,..)
i.e., (2), which completes the proof.
THEOREM 2. Let {G,} be a sequence of CebySev subspaces of a normed linear

space E, satisfying (3), such that the meiric projections wg, (k=1,2,...) are
linear, and let g, € Gy, (k = 1,2,...). In order that there exist an x € E satisfying

me ) =g (k=12,..) )
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it is necessary, and zf U Gyisreflexive or if Gy = Guyy = Guip = ..., it is sufficient

that

8k+1 — 8 € 15, (0) k=1,2,...). (11)

Proof. Assume that there exists an x € E satisfying (9). Then

lel = lma (ol < llme, () — x| + x| < 2%} *=1,2,..)),
whence we infer (10). Furthermore, by Theorem 1 we have

Bx+1 — 8k € 7751£+:(0) - 77(—;)'}(0) (k =12,.. -)’ (12)
whence, since now each 7g)(0) is a lincar subspace of E because g, is linear
(see [6], Ch. I, Theorem 6.4), and since, by (3), 7gl,,(0) < 7l(0) (k = 1,2,...),
we infer (11).

Conversely, assume that we have (10) and (11). Fix arbitrary n, k, with
1<k<n—1,and put
Ve = & — 8k (13)
Then, since each 7g!(0) is a linear subspace of E, and since, by (3),
75, (0) = 7gl(0) (I=1,2,...), we obtain from (11)

Vi=(8n— &u-1) +(&n—t — &n-2) + -+ + (Gis1 — &)
€ Tons(0) + 7G,,(0) + ... + 7G{(0) = 7G(0),
whence, by the quasi-additivity of =g, (see e.g. [6], Ch. I, Theorem 6.1),
Tl&n) = Te Vi + 8 = 7 (Vi) + & = G-

Since n, k, with 1 <k <n-—1, were arbitrary, and since 7 (g,) = g it
follows that
TelGrm=8&  (m=12,...) (14)

Now, assuming that U G, is reflexive, there exists by (10) a subsequence

i=1

{g,} of {gi}, converging weakly to an element x € E. Since g, is linear, it is
continuous on E, whence also weakly continuous, and hence, taking into
account (14), we infer

gr=WwW-— hm TrGl(gkj) = 7TGz(x) (l= 1927 “ '):
J—o
i.e., (9). On the other hand, assuming that G, = G, = Gp.s = ..., by (11)
wemusthave g,.1 — g, =0, 12 — g1 =0, .... Consequently, putting

X == gn(: Ent1 = 8ns2 =~ - ‘),
by (14), we have again (9), which completes the proof of Theorem 2.
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Remark 1. One can also give other equivalent formuiations of condition
(11), e.g., the following ones:

81 €580 (k,=1,2,..), (11a)
gk+l_gk _LGk (k= 1729“'): (llb)

where x |y if and only if ||x + «p| > | x| for all scalars o, and x | G if and
onlyifx | gforallgeG.

Remark 2. In the sufficiency part of Theorem 2 some additional assumption

{(like the reflexivity of U G,) is indeed necessary, as shown by the following

i=1

example: Let E = ¢, endowed with the norm

xl=sup &l + D LlE]l (= (8 e ar), (15)
J i=1

and for each k, let G, be the linear subspace [e,,...,¢] of E spanned by

{ey,...,e,}, where e; is the jth unit vector {0,...,0,1,0,...}. Then | | is equivalent
T

to the initial norm on ¢, and it is a 7-norm (see [3], [7]) with respect to the

unit vector basis {e,} of E, i.e., each G, is a Cebysev subspace of E and

WGk(x)={§1:~--a§k,0909"‘} (X::{fn}EE), {16}

o«
whence each =g, is linear. However, U G, = E is nonreflexive, and for

i=1

k
g=> e={,..,1,0,0,..} (k=1,2,..) (17
i=1 —

k

there exists no x € E satisfying (9) (since by (16} the only possible such x is
{1,1,...} ¢ c;), although this sequence {g,} satisfies conditions (10) and (I1)
of Theorem 2 (since by (16) 7g, (811 — &0) = 7o) = 0).

Remark 3. If G,= G,y = Gpa = ..., then, obviously, condition (10) in

Theorem 2 can be omitted. However, if we only assume that U &, is reflexive,
i=1

this is no longer the case, as shown by the following example: Let E=]2,

G, = the subspace [e,,...,e;] of E spanned by {e,...,e;}, (k= 1,2,...), where

{e,} is the unit vector basis of £, and

k
&= ¢={,..,1,0,0,..} k=1,2,..) (18}
i=1 o
k
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Then, again, the norm in E is a T-norm with respect to {e,}, i.e., each Gy isa
Cebysev subspace of E, and we have (16); whence each 7, is linear. Further-

o0
more, U G; = E is reflexive. However, sup;|g.] = «, and there exists no x € E
i=1

satisfying (9) (since, by (16), the only possible such x is {1,1,...} ¢ /%), although
{g:} satisfies (11) (since, for every g = >% ,a;e, € G, we have

k 172
lgest — gl =llec] =1< (1 + Zl |°‘iI2) =|8ks1 — & — &l)-

THEOREM 3. Let {G} be a sequence of Cebysev subspaces of a normed linear
space E, satisfying (4), and such that the metric projections wg, are linear.
Let g, € Gy (k=1,2,...). There exists an x € E satisfying (9) if and only if

i1 — & ETg(0)  (k=1,2,..). (19)

Proof. Assume that there exists an x ¢ F satisfying (9). Then, by Theorem 1,
we have (12), whence, since now each 73!(0) is a linear subspace of E (because
7, is linear), and since, by (4), 75.(0) < 7L, ,(0) (k = 1,2,...), we infer (19).

Conversely, assume that we have (19). Put

xX=g. (20)

Then, since each #g!(0) is a linear subspace of E, and since, by (4),
mei(0) = 7gl, (0) (k=1,2,...), we obtain from (19)
8 — X =8 —&n-1) + (g1 —&u2) +... +(&2—81)
€ 7y (0) + 75, ,(0) + ... + 75, (0) =75 (0) (m=2,3,..)),

whence, by the quasi-additivity of =g, it follows
8n— WGn(x) = 7TG,.(gn - .X) = 0 (n = 2a 3; .. '):

i.e. (9) (since obviously mg,(x) = 7s,(g,) = g;), which completes the proof of
Theorem 3.

Comparing Theorems 2 and 3, we see that the situation for decreasing
sequences of subspaces is “‘better”, since we need not make any additional

assumption like the reflexivity of U G, and since the condition of boundedness
of {g:} can be omitted.

Let us consider now property (A) (see the Introduction). A sequence of
subspaces {Gy} is called nontrivial if, for some index k > 1, G, # {0}.
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THEOREM 4. Let {G,} be a nontrivial sequence of linear subspaces of a normed
linear space E, satisfying (3) or (4), and such that at least one G, +# {0} is a
Cebysev subspace. Then {G,} does not have property (A).

Proof. Assume that G, # {0} is a CebySev subspace, and that there exists
an index / such that G, < G,. Take g, € G, and g; € G,\{gi}. If there existed an
x € E satisfying (2), then we would have g, € P, (x) N Gy, = P, (), contradict-
ing the assumption that Gy is Cebysev.

Assume now that G, # {0} is a CebySev subspace, and that there exists no
index [ such that G, = G,. Since {G,} is nontrivial, there exists an index / with
G, > G, # {0}. Take g, € Gy, and g, € G,\{g,}. If there existed an x € E satisfying
(2), then, since G, is Cebysev, we would have |x — g, <lx — gl for all g € G}
{g.}, whence, in particular, |x — g <|x — g|, which contradicts the fact
that g, € P (x), since g, € Gy. This completes the proof.

Remark 4. The only case excluded by the hypothesis that {G;} be nontrivial
is the case when G, = {0} for all k > 1. In this case it is easily seen that property
(A) always holds.

2. THE CASE OF HILBERT SPACES

THEOREM 5. Let {G,} be a sequence of closed linear subspaces of a Hilbert
space E, satisfying (3), and let g, € G, (k=1,2,...). There exists an x€ E
satisfying (9), if and only if

sup [lgil| < e, @b

(gk—l—l_gk:g):() (gEGkvk:LQ'!) (22}

Moreover, in this case, the sequence {g,} converges (in the norm-topology),
and we have
lim g, = 7g(x), (23)

k—0

where G = B G;, and where x is any element in E satisfying (9).

i=1

Proof. The first part is an immediate consequence of Theorem 2 and
Remark 1.

Assume now that x is an arbitrary element in E satisfying (9). We claim that,
in this case, {g,} is a “minimizing sequence” for x in the subspace G, i.e.,

lim |x — g} = inf |x — g} @4)
k~>t0 geG

Indeed, let € > 0 be arbitrary, and let g’ € G be such that |x — g'| < inf,s
|x — gl + €/2. Then, by the definition of G, there exist an index N = N(e) and
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an element g” € Gy < Gyy; <... such that |g' —g"] <e/2. Consequently,
by (9),

inf |~ gl < |x — g =% — m (9] <~ ']
<lr-gl+lg ~gI<inflx—gl+e (> N),

whence, since € > 0 was arbitrary, we infer (24).
However, (24) implies (see, e.g., [4], p. 248, Lemma 2) that the sequence
{g:} converges (in the norm-topology) to an element g, € G, whence

tim | - go] | - l.

Consequently, taking into account (24), we have |x — go| = inf,||x — g|,
i.e., go = mg(x), which completes the proof of Theorem 5.

Remark 5. From the above it follows that for any pair x’, x” € E satisfying
(9), we have ng(x") =7g(x") =lim;_,,g;. On the other hand, the proof of
Theorem 2 shows that x =w — lim,_, g, =lim;_,.g, € G itself also satisfies
(9) (for this particular x we have, of course, 7g(x) = x).

THEOREM 6. Let {G\} be a sequence of closed linear subspaces of a Hilbert
space E, satisfying (4), and let g, € G, (k=1,2,...). There exists an x€ E

satisfying (9), if and only if
(8k+1 — 81,8 =0 (g€ Gusk=1,2,...). (25)

Moreover, in this case, the sequence {g;} converges (in the norm-topology),

and we have
hm gk = Wg(x), (26)

k—o

where G = F% G, and where x is any element in E satisfying (9).
i=1

-
Proof. The first part is an immediate consequence of Theorem 3.

Now let x be an arbitrary element in E satisfying (9). We shall prove that
{g.} is a minimizing sequence for x in G, i.e., that we have (24).
Observe, first, that lim,_,,|x — g.| exists and is <inf,c|x — g|, since

=gl = inf [x—g| < inf Jv—g|=fv—genl (k=120

and since
%~ gd = inf |x —g] < inf[x—g] (k=1,2,..)
geGr gcG

(by virtue of G, 2 Gy, 2 G).
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Since, by (9), we have sup|g.| <2|x||, we can extract a subsequence {g; }
of {g,}, converging weakly to an element y € E. Then we have

lx—=yl1x — gi,=10x —», x — g )| = [(x =y, x — )
=llx—y*%  asj-> . 27

Furthermore, since g, €G; for =i, i+ 1,i+2, ... (i=1,2,...}, we have
ye N G;=G. Now, if x=y, then xe G= N1 G,, whence g, = mg,(x) = x
i=1 i=1

(k=1,2,...}, and, thus, (24) holds (with 0 on both sides). On the other hand,
if x # y, then from (27) we obtain

|
Fh?

fim [lx — gy | > | —y| > inf|lx —g] > Lim |x —g,
J—roo ge J—o
whence lim; . |x — g, =inf,c|x —g| =lx — |, i.e. {g,} is a minimizing
sequence, and y = wg(x).

Now, if {g,} itself were not a minimizing sequence, there would exist an
€y > 0 and an infinite sequence of indices, say {i,}, such that

Hx"gi,,“ ‘;gljlix_gn 250 (n: 1327'-‘)9 (28}

and then, repeating the above argument for {g;} instead of {g,}, we would
obtain a minimizing subsequence of {g; }, contradicting (28). Thus, the sequence
{g,} itself is a minimizing sequence.

Consequently, as in the final part of the proof of Theorem 4, {g;} is convergent
(in the norm-topology) to an element g, € G, which, by (24), must coincide
with 7g(x) (this also follows from w — lim;_,gx, = ¥ = 7s(x)). This completes
the proof of Theorem 6.

Finally, from Theorem 4 it follows that no nontrivial sequence of closed
linear subspaces of a Hilbert space E, satisfying (3) or (4), has property (A).

3. SoME RESULTS IN SPACES OF CONTINUOUS FUNCTIONS

The answer to the second question of T. J. Rivlin (see the Introduction) is
given by

THEOREM 7. Let E = C([0,1]), let G,,G, be the Cebysev subspaces G, = [z,],
G, =121,2,], where z,() =1, z() =t (t€[0,1)), and let g, € G, (k=1,2).
There exists an x € E satisfying

o) =g  (k=12) 29

if and only if the linear function g = g, — g, is either =0 or has one change of
sign in [0,1].
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Proof. Assume that there exists an x € F satisfying (29), but the condition
of the theorem is not satisfied, i.e., g5£0 and does not change sign in [0, 1],
say g = 0 on [0,1].

By virtue of Theorem 1 and the alternation theorem of CebySev, there
exist elements

v €7l 0)={ye C([0,1]] there exist ¢; < 1, in [0, 1]
with y(t,)) = —(6) =3[ y[},  (30)
yemgl(0)={ye C([0,1])] there exists t; < t, < 5 in [0, 1]
with y(t;) = —y(ts) = y(t;) = &'|| ¥},

(3D
where 8, 8’ = &1, such that
g=8 &1 =Y (32)
We claim that
Iyl =12l (33)

Indeed, if this claim were not true, then, since y, =g + ¥, > y,, we would
have || ;]| > | 1], whence

-l <=yl <y@ <@ (@¢[0,1),

contradicting (31).

Now from (33) and (32) it follows that g(z,) = O for each ¢, € [0, 1] such that
y1(t)) = | »,|. Since the linear function g has at most one zero, it follows that
we have g(¢) > 0 for all ¢ # t,, whence

y2(t) = 2@ + y:1(t) > yi(&) =~ 1] = | 32| (t 0, 11\{zo}))

which, since y,(t) = y1(to) = y1 = | 2|, contradicts (31).

In the case when g < 0 on [0,1], we arrive at a contradiction by a similar
argument. This proves that the condition is necessary.

Assume now that the condition is satisfied, i.e., g = g, — g, is either =0, or
has one change of sign in [0, 1].

Then, if g =0, for x = g, = g, we obviously have (29).

On the other hand, if

g=g.()—gO=at+b (34

has one change of sign in [0,1], then a# 0 and 0 <—b/a < 1. We have to
consider several cases:
Case 1. a>0, and 0 < —b/a < 1. Put

4] fort=0

b
wn={~lel fort==27 (35)
lg]l—a fort=1

_ linear for the other 7.
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Then, since 0 < a = g(1) — g(0) < 2{g|, we have | || — a <|g|, whence (30)
with ¢, =0, £, = —2b/a, 8 = 1. Furthermore, for the function

lgll +5 fors=0

b
yit) = g(0) + yi(y = | Nl b Forz==27 36)
l lgl+b fort=1

{ linear for the other ¢

we have (32) and (31) with #; =0, ¢, =—2b/a, ts=1, & =1, whence, by
Theorem 1, there exists an x € C([0,1]) satisfying (29).

Case 2. a<0 and 0 < ~bja < %. Then —g = —at — b, with —a > 0, whence,
by case 1 above, —g=y, —y, with y,€7ng(0) (k=1,2). Consequently,
g = (~,) — (-31), and, obviously, —y, € 75}(0) (k = 1,2), whence, by Theorem
1, there exists an x € C([0, 1]) satisfying (29).

Case3. —bla= 1. Put

n=-8 Y.=g+y =0 37

Then y, satisfies (30) with #; =0, ;=1 (since g(0)=5, g\)=a+b=
—2b -+ b = —b), and y, obviously satisfies (31) and (32), whence, by Theorem 1,
there exists an x € [0, 1] satisfying (29).

Case 4. a>0, and L <-bla<1. Then g(1 —¢)=—at+ (@+b), with
—a < 0,and 0 < (a + b)/a =1 — (—b/a) < %, whence, by case 2 above, g(1 — ) =
¥2(t) = y1(8), with y, € 7G,(0) (k = 1,2). Consequently, g(¢) = y(1 — ) =y, (1 — 1)
(t € [0,1]), and, by (30), (31), y,(1 — ) € w5}(0) (k = 1,2), whence, by Theorem
1, there exists an x € C([0, 1]) satisfying (29).

Case5. a<0,and$ < —bj/a<1.Theng(l — t)=—at + (a + b), with—a > Q,
and 0 < (a + b)/a= 1 — (—bja) < %, and we proceed as in case 4, with the only
difference that now we use case 1. This completes the proof of Theorem 7.

Remark 6. The above arguments can probably be extended to yield the same
result for an arbitrary CebySev system z;,z, instead of z,()=1, z,(t) =+
(Recall that a system of n functions, z; ..., z,, in C{Q) (Q compact) is called a
Cebysev system on Q [1], if every nonzero linear combination 3" «; z;, has at
most n — 1 zerosin Q.)

For more than two functions we know only the following necessary condi-
tion. Both the theorem and the proof are due to T. J. Rivlin [5].

THEOREM 8. Let E = C([0,11), G = [z1,.. ., z], where z ) = ' (k= 1, ..., )
andg, € G, (k=1,...,n). If there exists an x € E satisfying
Ter(x) :gk (k = 19 s ey n)a (38>
then for each pair of indices I, k with 1 <<k <n, the polynomial g, — g, is
either =0, or changes sign at at least | distinct points in [0,1].
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Proof. Suppose that 1 </ <k <n, g,— g,7#0. By the alternation theorem
of Cebysev, there exist / + 1 distinct points, 7,, ..., f;.1, such that

x(ty) — glt)) = —[x(t2) — g(t)] = . .. = (D [x(t111) — git111)]
=3llx — g, (39)

where 8 = +1. We claim that
[x — gl <llx —g&il.- (40)

Indeed, by G, < G, and (38), we have |x — g] < |x — g;|. Now, if we had
[x—g =|x—gl, then, again by G,<=G, and (38), we would have
8 =7g (%), & =mg(x), contradicting the assumption that g, —g,#0.
This proves (40).

Consequently, by (40) and (39), the polynomial

&—&=x—g)—(x—g0

has the same sign as (x — g;) at 7, ..., #;,,, whence, by (39), it has at least / sign
changes, which completes the proof.

In the case when n =2, the condition of Theorem 8 is also sufficient, as
shown by Theorem 7. We do not know whether this condition remains sufficient
ifn>2.

THEOREM 9. Let E=105"=the space of all triplets of real scalars
x={€,,€,,&3}, endowed with the norm ||x| = max, ¢; <3|&| (ie., E=C(Q),
where Q consists of three points). Let G,, G, be the Cebysev subspaces Gy = [z,],
G, = [z,,2,], where z; = {1,1,1}, z, = {0,4,1}, and let g, € Gy (k= 1,2). There
exists an x € E satisfying (29), if and only if the point g = g, — g, = {y1, V2, V3}
satisfies either

By;<y1<—dy; “n
or
~dy; <y1 <3y 42)

Proof. Observe, first, that g={y,y2,y3} € G3 = [2},2,] is of the form
o1 2y + aazy = {0y, 000 + (02/2), ¢y + p}, With suitable o, «,; Whence

v2 =3(y1 + v3) 43)

Assume now that there exists an x € E satisfying (29). Then, by Theorem 1
and the “alternation theorem” for Ceby3ev systems in C(Q) spaces (see e.g.
[6], Ch. IT, Theorem 1.4), there exist elements

Y1 € 6 (0) = {y = {01, M2, 73} € E| there exist 1 <i<j<3
with n; = —; =8|y}, (44)

Y2 € 775;(0) = {y = {771’7]2’ 7]3} € E] M="MN2="N3= 8,”})“}’ (45)
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where §,8' =1, such that
g§=8— 8 =y~ (46)
Let yy = {m}, 21,131} Then, by (46), we have
y={yi+nlya+mhys +m'h
whence, by (45),
i+l ==y =t =yt 4n
By (44), we have to consider the following three cases:
Case 1. ' =—x,' =8| y||. Then, from (47) and (43) we infer y, = —y, =
(v, — v3)/2, whence v, = —3y;, and thus (41) is satisfied.
Case 2. —n,' = 93! =8| yy||. Then from (47) and (43) we infer y; = —y, =
(—y1 — v3)/2, whence y, = —3v; and, thus, (41) is satisfied.
Case 3. 5! = —n;! =8| y,|. Then from (47 and) (43) we infer

1:j1+7’3
M4 2 9
— Dy — g — 2y =2
?721=_Vz—’)’1+y12'y3= 72 271 Y3 __ }’12 73,
whence
12y + 2p3] =2|na'| < 2wl =2Im,*| = |y ~ sl 48)

Now, if y;—vy; 20, then (48) implies y; — v, <2y + 2y, < y; —ys,
whence —%y; <y, < —3y,, and, thus, (42) is satisfied. On the other hand,
if y;—v3<0, then (48) implies y; —vy; €2y, +2y; <y; —v,, whence
—3yy < vy € ~%y,, and, thus, (41) is satisfied.

Conversely, assume that g= {y,,y,,y;; satisfies (41) or (42), whence
291 + 2y3| < |=y1 -+ ys|. Then, taking y; = {n.",9,',75"}, where

—yi+ Dy =2
m‘=%—~y’2 e nz‘=*—--wy'2 R (49)

and taking y, = {y; + i, y2 + 2ty + 13"}, by (43) we shall have (44), (45)
and (46), whence, by Theorem 1, there exists an x & E saitsfying (29), which
completes the proof of Theorem 9.

Remark 7. If we regard the space E = [;* as C(Q), where 0 = {0,1, 1}, and
zy = {1, 1,1}, z, = {0,3,1} as the restrictions to @ of the functions ¢;{({} =1,
and é,(t) =1, respectively, then, by an easy computation, the condition of
Theorem 9 is equivalent to the following: g is the restriction to @ of a linear
function y(f)=at + bsuch thata#0, } < —bla< 3.

We shall say that a pair {G,, G,} of linear subspaces of a normed linear space
E has property (A,), if for every pair {g,,g,} with g; € G, (k = 1,2), there exists
an x € E such that

GeZo ) (k=12 (50)
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THEOREM 10. A pair {G,G.} of linear subspaces of E =1,°, with G, < G,
dim Gy =k (k =1,2) has property (A,), if and only if G, is a coordinate axis
and G, is a plane passing through G.

Proof. If {G,,G,} has property (A,), then, by Theorem 4, both G, and G,
must be non-Ceby3ev subspaces, whence, by the classical theorem of Haar, G,
must be contained in a coordinate plane, and G, must be a plane passing
through a coordinate axis. Hence we have to consider the following two cases:

Case 1. G, is the intersection of G, with the coordinate plane perpendicular
to the coordinate axis through which G, passes. Take g, € G|, and g, € G,\{g,}-
Then a simple computation shows that G, is “Cebysev with respect to the set
75l (g,)”, i.e., every x € mgi(g,) has g, as unique element of best approximation
inG;:

T =g  (xemzie)). (51)

Consequently, there is no x € E satisfying (50), and, thus, {G,,G,} does not
have property (A,).

Case 2. G, is the coordinate axis through which G, passes. Then, again a
simple computation shows that {G,,G,} has property (A,), which completes
the proof of Theorem 10.
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