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INTRODUCTION

T. J. Rivlin has recently raised the following problem [5]: Characterize those
n-tuples of algebraic polynomials {PO,Pl," .,Pn-l}, with degrees satisfying

degpj=j (j=O,I, ...,n-I), (1)

for which there exists an x E C([O, 1]) such that the polynomial of best approxi­
mation of degree j to x (in the sense of Cebysev) is Pj (j = 0, 1, ... ,n - 1). What
is the answer in the particular case n = 2 ?

In the present paper we shall consider the following more general problem:
Let {Gk } be a sequence of linear subspaces of a normed linear space E.
Characterize those sequences {gk} in E, with gk E Gk (k = 1,2, ...), for which
there exists an x E E such that

(k= 1,2, ...) (2)

where.?JIG(x) denotes the set of all elements of best approximation to x from G,
i.e., the set

{go E Gllix - goll = inf Ilx - gil}·
YEG

We shall devote most of our attention to the cases when

(3)
or

(4)

both in general and in some concrete normed linear spaces; in particular, we
shall give a complete answer to the second question ofT. J. Rivlin in C([O, 1]).
Finally, we shall also consider the problem of characterizing the sequences of
subspaces {Gk } satisfying (3) or (4) and with the following property, which we
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shall call property (A): for every sequence {gk} with gk E Gk (k = 1,2, ...)
there exists an x E E satisfying (2).

Let us mention that the above problems are somewhat analogous to "the
inverse problem of the theory of best approximation" (i.e., the problem of
finding an x E E with prescribed "best error" values eGk(x) = infgEGkllx -- gil,
(k = 1,2, ...) raised by S. Bernstein [2].

We conclude the introduction with a brief review of some useful notation
and terminology. (All our notation conforms to that of the monograph [6]).
We recall that 7T(j.l(g), where g E G, denotes the set of all y E E such that
g E.9'G(Y)' A subspace G of E is called a Cebysev subspace if each x E E has a
unique element of best approximation go E G. In this case the mapping
7TG: x -?- go is called the metric projection of E onto G.

1. SOME RESULTS IN GENERAL NORMED LINEAR SPACES

A solution of the main problem ofthe Introduction is given by

THEOREM 1. Let {Ok} be a sequence of linear subspaces of a normed linear
space E, and let gk E Ok (k = 1,2, ...). There exists an x E E satisfying (2) ifand
only if there exist elements Yk E 7T(j.;(O) (k = 1,2, ...) such that

(k= 1,2, ...). (5)

Proof Assume that there exists an x E E satisfying (2). Put

(k = 1,2, ...). (6)

Then by (2) we have 0 E .9'GiYk), i.e., Yk E 7T(j.:(O) (k = 1,2, ...), and by
consecutive subtraction in (6) we obtain (5).

Conversely, assume that there exist elements Yk E 7TG:(O) such that we have
(5). Put

(7)
Then by (5) we have

X =gj - Yl =g2 - Y2 = ...

whence, by 0 E .9'Gk(Yk), we obtain

Ilx - gkll = !!Ykll ~ IIYk - gk + gil = Ilx - gil

i.e., (2), which completes the proof.

THEOREM 2. Let {Ok} be a sequence ofCebysev subspaces of a normed linear
space E, satisfying (3), such that the metric projections 7TGk (k = 1,2, ...) are
linear, and let gk E Gk (k = 1,2, ...). In order that there exist an x E E satisfying

7TGix) = gk (k = 1,2, ...),
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co

iUs necessary, and if U G i is reflexive or ifGn= Gn+1= Gn+Z= ..., it is sufficient
i-I ~

that

(k = 1,2, ...).

Proof Assume that there exists an x E E satisfying (9). Then

(10)

(11)

(k = 1,2, ...),

whence we infer (10). Furthermore, by Theorem 1 we have

gk+1 - gk E 7TO!+I(O) - 7To1(0) (k = 1,2, ...), (12)

whence, since now each 7To1(0) is a linear subspace of E because 7TGk is linear
(see [6], Ch. I, Theorem 6.4), and since, by (3), 7To1+1(0) c 7To1(0) (k = 1,2, ...),
we infer (11).

Conversely, assume that we have (10) and (II). Fix arbitrary n, k, with
1 ~ k ~ n - 1, and put

Yk = gn - gk' (13)

Then, since each 7To!(O) is a linear subspace of E, and since, by (3),
7TOll+I(O)C7TOf(O) (/= 1,2, ...), we obtain from (11)

Yk = (gn - gn-J + (gn-l - gn-Z) + ... + (gk+1 - gk)

E 7To;jO) + 7TG;jO) + ... + 7TG1(0) = 7TG1(0),

whence, by the quasi-additivity of 7TGk (see e.g. [6], Ch. I, Theorem 6.1),

7TGk(gn) = 7TG/Yk + gk) = 7TGk(Yk) + gk = gk'

Since n, k, with 1 ~ k ~ n - 1, were arbitrary, and since 7TGn(gn) = gm it
follows that

(l,m= 1,2, ...). (14)
co

Now, assuming that U Gi is reflexive, there exists by (10) a subsequence
i-I

{gk} of {gk}, converging weakly to an element x E E. Since 7TGI is linear, it is
continuous on E, whence also weakly continuous, and hence, taking into
account (14), we infer

gz = w - lim 7TGlgkj) = 7TGlx) (I = 1,2, ...),
j----rCO

i.e., (9). On the other hand, assuming that Gn= Gn+1= Gn+2 = ... , by (11)
we must have gn+1 - gn = 0, gn+Z - gn+1 = 0, .... Consequently, putting

x = gnC= gn+1 = gn+Z = ...),

by (14), we have again (9), which completes the proof of Theorem 2.
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Remark 1. One can also give other equivalent formulations of condition
(11), e.g., the following ones:

gk+l E 71'G;(gk) (k, = 1,2, ), (Ila)

gk+1 -gk 1.. Gk (k= 1,2, ), (lIb)

where x 1.. y if and only if Ilx + OI:yll ~ Ilxll for all scalars 01:, and x 1.. G if
only if x 1.. g for all g E G.

Remark 2. In the sufficiency part of Theorem 2 some additional assumption
00

(like the reflexivity of U Gi) is indeed necessary, as shown by the following
i~1

example: Let E = Co endowed with the norm

00 1
Ixl = s~p Igjl +L2} Ig;\

J i~1

and for each k, let Gk be the linear subspace [e" ,ekJ of E spanned by
{e" ... ,ek}, where ej is thejth unit vector {O, ... ,0, 1,0, }. Then I Iis equivalent

'---y---'
j-I

to the initial norm on Co, and it is a T-norm (see [3], [7]) with respect to the
unit vector basis {en} of E, i.e., each Gk is a Cebysev subspace of E and

(16)

00

whence each 71'Gk is linear. However, U Gi = E is nonreflexive, and for
i~1

k

gk = 2: ei = {1, ... , 1,0,0, ...}
i~1 '---y---'

k

(k=I,2, ...) (17)

there exists no x E E satisfying (9) (since by (16) the only possible such x is
{1, 1, ...} l' co), although this sequence {gk} satisfies conditions (10) and
of Theorem 2 (since by (16) 71'Gigk+1 - gk) = 71'Gk(ek+l) = 0).

Remark 3. If Gn = Gn+1 = Gn+2 = ... , then, obviously, condition (10) in
00

Theorem 2 can be omitted. However, if we only assume that U Gi is reflexive,
i~l

this is no longer the case, as shown by the following example: Let E = F,
Gk=the subspace [e" ... ,ek] of Espanned by {e" ... ,ek}' (k= 1,2, ...), where
{en} is the unit vector basis ofE, and

k

gk = L ei = {I, ... , 1,0,0, ...}
i~ I '---y---'

k

(k = 1,2, ...). (18)
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Then, again, the norm in E is a T-norm with respect to {en}, i.e., each Gk is a
Cebysev subspace of E, and we have (16); whence each 7TGk is linear. Further-

00

more, U Gi = E is reflexive. However, sUPkllgkl1 = ro, and there exists no x E E
i~1

satisfying (9) (since, by (16), the only possible such x is {I, 1, ...} ¢ F), although
{gk} satisfies (11) (since, for every g = 2:~~IO(iei E Gk> we have

(
k )1/2

!!gk+! - gkll = Ilek+!11 = 1~ 1+ i~1 IO(il 2
= Ilgk+! - gk - gil)·

THEOREM 3. Let {Gk} be a sequence of Cebysev subspaces ofa normed linear
space E, satisfying (4), and such that the metric projections 7TGk are linear.
Let gk E Gk (k = 1,2, ...). There exists an x E E satisfying (9) ifand only if

(k= 1,2, ...). (19)

Proof Assume that there exists an x € E satisfying (9). Then, by Theorem 1,
we have (12), whence, since now each 7TG;(O) is a linear subspace of E (because
7TGk is linear), and since, by (4), 7TG;(O) c 7TG;+I(O) (k = 1,2, ...), we infer (19).

Conversely, assume that we have (19). Put

(20)

Then, since each 7TG;(O) is a linear subspace of E, and since, by (4),
7TG:(O) c 7TG:+I(O) (k = 1,2, ...), we obtain from (19)

gn - X = (gn - gn-\) + (gn-\ - gn-2) + ... + (g2 - g\)

E 7TG~(O) + 7TG~_'(O) + ... + 7TG~(O) = 7TG~(O) (n = 2,3, ...),

whence, by the quasi-additivity of 7TGn' it follows

(n = 2, 3, ...),

i.e. (9) (since obviously 7TGl(X) = 7TG,(g\) = g\), which completes the proof of
Theorem 3.

Comparing Theorems 2 and 3, we see that the situation for decreasing
sequences of subspaces is "better", since we need not make any additional

00

assumption like the reflexivity of U Gi , and since the condition ofboundedness
i=1

of {gk} can be omitted.
Let us consider now property (A) (see the Introduction). A sequence of

subspaces {Gk} is called nontrivial if, for some index k > 1, Gk =I- {O}.
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THEOREM 4. Let {Gk} be a nontrivial sequence oflinear subspaces ofa normed
linear space E, satisfying (3) or (4), and such that at least one Gk # {O} is a
Cebysev subspace. Then {Gk} does not have property (A).

Proof Assume that Gk # {O} is a Cebysev subspace, and that there exists
an index I such that Gk C GI. Take gk E Gk, and g/ E Gk\{gd. If there existed an
x E E satisfying (2), then we would have gl E gllGlx) n Gk C gllGk(X), contradict­
ing the assumption that Gk is Cebysev.

Assume now that Gk # {O} is a Cebysev subspace, and that there exists no
index I such that Gk C G1• Since {Gk} is nontrivial, there exists an index I with
Gk ::::> GI # {O}. Takeg, E GI, andgk E GI\{g/}' If there existed an x E Esatisfying
(2), then, since Gk is Cebysev, we would have Ilx - gkll < [Ix - gil for all g E Gk\

{gk}, whence, in particular, Ilx - gkll < Ilx - gIll, which contradicts the fact
that gl E gllG!(x), since gk E GI. This completes the proof.

Remark 4. The only case excluded by the hypothesis that {Gk} be nontrivial
is the case when Gk = {O} for all k > 1. In this case it is easily seen that property
(A) always holds.

2. THE CASE OF HILBERT SPACES

THEOREM 5. Let {Gk} be a sequence of closed linear subspaces of a Hilbert
space E, satisfying (3), and let gk E Gk (k = 1,2, ...). There exists an x E E
satisfying (9), ifand only if

(gEGk;k= 1,2'00')'

(21)

(22)

Moreover, in this case, the sequence {gk} converges (in the norm-topology),
and we have

lim gk = 'lTG(x),
k-+oo

00

where G = U Gi , and where x is any element in E satisfying (9).
i~l

(23)

Proof The first part is an immediate consequence of Theorem 2 and
Remark 1.

Assume now that x is an arbitrary element in E satisfying (9). We claim that,
in this case, {gk} is a "minimizing sequence" for x in the subspace G, i.e.,

lim Ilx - gkli = iuf Ilx - gil·
k~oo gEG

(24)

Indeed, let € > 0 be arbitrary, and let g' E G be such that Ilx - g'll :::; infgEG

lix - g~ + E/2. Then, by the definition of G, there exist an index N = N{E) and
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an element g" E GN C GN +1 c ... such that Ilg' - g"ll < e/2. Consequently,
by (9),

inf Ilx - gil :( Ilx - gk\\ = Ilx - 7TGix)11 :( Ilx - g"ll
gEG

:( Ilx - g'll + Ilg' - g"ll :( inf Ilx - gil + e
gEG

(k ~ N(e)),

whence, since e > 0 was arbitrary, we infer (24).
However, (24) implies (see, e.g., [4], p. 248, Lemma 2) that the sequence

{gk} converges (in the norm-topology) to an element go E G, whence

lim Ilx - gkll = Ilx - gall·
k ....'"

Consequently, taking into account (24), we have Ilx - gall = infgEGllx - gil,
i.e., go = 7TG(X), which completes the proof of Theorem 5.

Remark 5. From the above it follows that for any pair x', x" E E satisfying
(9), we have 7TG(X') = 7TG(X") = limH",gk' On the other hand, the proof of
Theorem 2 shows that x = w -limk-...",gk = limk-...",gk E G itself also satisfies
(9) (for this particular x we have, of course, 7TG(X) = x).

THEOREM 6. Let {Gk} be a sequence of closed linear subspaces of a Hilbert
space E, satisfying (4), and let gk E Gk (k = 1,2, ...). There exists an x E E
satisfying (9), ifand only if

(gk+1 - gk,g) = 0 (g E Gk+l; k = 1,2, ...). (25)

Moreover, in this case, the sequence {gk} converges (in the norm-topology),
and we have

lim gk = 7TG(X),
k-"'",

'"where G = n Gi , and where x is any element in E satisfying (9).
i=1

Proof The first part is an immediate consequence of Theorem 3.

(26)

Now let x be an arbitrary element in E satisfying (9). We shall prove that
{gk} is a minimizing sequence for x in G, i.e., that we have (24).

Observe, first, that limH",!lx - gkll exists and is :( infgEGllx - gil, since

Ilx - gkll = inf Ilx - gll:( inf Ilx - gil = Ilx - gk+111
gEGk gEGk+1

and since

(k= 1,2, ...),

Ilx - gkll = inf Ilx - gil :( inf Ilx - gil (k = 1,2, ...)
gEGk' gEG

(by virtue of Gk ::::> Gk+l ::::> G).
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Since, by (9), we have sUPkllgkl1 ~ 211xll, we can extract a subsequence {gk)
of {gk}, converging weakly to an element y E E. Then we have

[Ix - ylllix - gd;? I(x - y, x - gkj)! -» I(x - y, x - y)1

= Ilx - y112, as} -» 00. (27)

Furthermore, since gl E Gi for 1= i, i + 1, i + 2, ... (i = 1,2, ...), we have

00 00

yEn Gi = G. Now, if x = y, then x E G = n Gi, whence gk = 1TG.(X) = x
i~1 i~l

(k = 1,2, ...), and, thus, (24) holds (with °on both sides). On the other hand,
if x =1= y, then from (27) we obtain

lim Ilx - gkjll ;::, Ilx - yll ;::, inf Ilx - gil;::, lim Ilx - gd,
J-+co (jEG j--+oo

whence limj-;.oollx - gdl = infgEGllx - gl! = Ilx - yll, i.e. {gkj} is a minimizing
sequence, and y = 1TG(X).

Now, if {gk} itself were not a minimizing sequence, there would exist an
EO> 0 and an infinite sequence of indices, say {in}, such that

Ilx - ginll- inf Ilx - gil;::, EO
gEG

(n = 1,2, ...), (28)

and then, repeating the above argument for {gin} instead of {gk}, we would
obtain a minimizing subsequence of{gin}' contradicting (28). Thus, the sequence
{gk} itself is a minimizing sequence.

Consequently, as in the final part of the proofofTheorem 4, {gl} is convergent
(in the norm-topology) to an element go E G, which, by (24), must coincide
with 1TG(X) (this also follows from w -limj->oogk. = y = 1TG(X)). This completes

J

the proof of Theorem 6.
Finally, from Theorem 4 it follows that no nontrivial sequence of closed

linear subspaces ofa Hilbert space E, satisfying (3) or (4), has property (A).

3. SOME RESULTS IN SPACES OF CONTINUOUS FUNCTIONS

The answer to the second question of T. J. Rivlin (see the Introduction) is
given by

THEOREM 7. Let E= C([O, 1]), let GJ,G2 be the Cebysev subspaces G j = ltd,
G2= [ZI,Z2]' where ZI(t) == 1, Z2(t) == t (t E [0,1]), and let gk E Gk (k = 1,2).
There exists an x E E satisfying

(k = 1,2) (29)

if and only if the linear function g = g2 - gl is either == °or has one change
sign in [0,1].
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Proof Assume that there exists an x E E satisfying (29), but the condition
of the theorem is not satisfied, i.e., g ¢ °and does not change sign in [0, 1],
say g ~ °on [0,1].

By virtue of Theorem 1 and the alternation theorem of Cebysev, there
exist elements

YI E 1TG~(O) = {y E C([O, 1]) I there exist t l < t2 in [0,1]
withy(tl) = -y(t2) = Sllyll}, (30)

Y2 E 1TG~(O) = {y E C([O, 1]) I there exists t3 < t4 < t5 in [0, 1]
with y(t3) = -y(t4 ) = y(ts) = S'llyll},

(31)
where S, S' = ±1, such that

g=g2-gl=Y2-YI'
We claim that

(32)

(33)

Indeed, if this claim were not true, then, since Y2 = g +YI ~ YI' we would
have IIY211 > IIYIII, whence

- Y211 < -IIYIII :::; YI(t):::; Y2(t) (t E [0,1]),

contradicting (31).
Now from (33) and (32) it follows that g(to) = °for each to E [0, 1] such that

YI(tO) = IIYIII· Since the linear function g has at most one zero, it follows that
we have g(t) > °for all t # to, whence

yit) == g(t) +YI(t) > YI(t) ~ -IIYIII = -IIY211 (t E [0, 1]\{to})

which, since yito) = YI (to) = II YIII = II Y211, contradicts (31).
In the case when g:::; °on [0,1], we arrive at a contradiction by a similar

argument. This proves that the condition is necessary.
Assume now that the condition is satisfied, i.e., g = g2 - gl is either =0, or

has one change of sign in [0, 1].
Then, if g == 0, for x = gl = g2 we obviously have (29).
On the other hand, if

(34)

has one change of sign in [0,1], then a # °and 0< -bla < 1. We have to
consider several cases:

Case 1. a> 0, and °< -bla < 1-- Put

{

Ilgll for t = °
b

(t) _ - IIgll for t = -2~
YI - a

IIgll - a for t = 1
l linear for the other t.

(35)
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Then, since 0 < a = g(l) - g(O)::::; 211gll, we have Illgjl- al :( ilgll, whence (30)
with t 1 = 0, tz = -2bja, 0 = 1. Furthermore, for the function

r Ijgjl + b for t = 0 b

yzCt) = get) +Yl(t) = ~ -jjgll- b for t = -2a (36)

I [[gil + b for t = 1
l linear for the other t

we have (32) and (31) with t3 = 0, t4 = -2bla, t5 = 1, 8' = 1, whence, by
Theorem 1, there exists an x E C([O, 1]) satisfying (29).

Case 2. a < 0 and 0 < -bla < -t. Then -g = -at - b, with -a> 0, whence,
by case 1 above, -g = Yz - Yl with Yk E 1TG~(O) (k = 1,2). Consequently,
g = (-yz) - (-Yl)' and, obviously, -Yk E 1TG~(O) (k = 1,2), whence, by Theorem
1, there exists an x E C([O, 1]) satisfying (29).

Case 3. -bla = -t. Put

Yl = -g, Yz = g +Yl = O. (37)

Then Yl satisfies (30) with t1 = 0, tz = 1 (since g(O) = b, g(1) = a + b =

-2b + b = -b), andyz obviously satisfies (31) and (32), whence, by Theorem 1,
there exists an x E [0,1] satisfying (29).

Case 4. a> 0, and t < -bja < 1. Then g(1 - t) = -at + (a + b), with
-a < 0, and 0 < (a + b)la = 1 - (-bla) < t, whence, by case 2 above, g(l - t) =

Y2(t) - Yl(t), withYk E 1TG~(O)(k = 1,2). Consequently, get) = Yz(l- t) - Yl(1- t)
(t E [0,1]), and, by (30), (31), Yk(1 - t) E 1TG~(O)(k = 1,2), whence, by Theorem
1, there exists an x E C([O, 1]) satisfying (29).

Case 5. a < 0, and t < -bla < 1. Then g(1 - t) = -at + (a +b), with -a> 0,
and 0 < (a + b)ja = 1 - (-bja) < t, and we proceed as in case 4, with the only
difference that now we use case 1. This completes the proof of Theorem 7.

Remark 6. The above arguments can probably be extended to yield the same
result for an arbitrary Cebysev system Zj,Z2 instead of ZI(t) == 1, zz(t) == t.
(Recall that a system ofn functions, ZI ... , Zm in C(Q) (Q compact) is called a
Cebysev system on Q [1], if every nonzero linear combination Lin Q(,iZi, has at
most n - 1 zeros in Q.)

For more than two functions we know only the following necessary condi­
tion. Both the theorem and the proof are due to T. J. Rivlin [5].

THEOREM 8. Let E = C([O, 1]), Gk = [ZI"'" zd, where zit) == tk- 1 (k = 1, ... ,n)
and gk E Gk (k = 1, ... , n). Ifthere exists an x E E satisfying

1TOk(X) = gk (k = 1, ..., n), (38)

then for each pair of indices I, k with 1 ::::; 1< k :( n, the polynomial gk - gl is
either == 0, or changes sign at at least I distinct points in [0,1].
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Proof Suppose that 1 ~ l < k ~ n, gk - gl :¢ O. By the alternation theorem
ofCebysev, there exist! + 1 distinct points, t l , ... , t l +!, such that

x(tl ) - gl(tl) = -[x(tz) - gl(tz)] = ... = (-l)l[x(tI+!) - gl(tl+!)]

= ollx - gill, (39)

where 0 = ±l. We claim that

Ilx - gkll < Ilx - gzll· (40)

Indeed, by GI C Gk and (38), we have Ilx - gkl1 ~ [Ix - gill. Now, if we had
Ilx - gkll = Ilx - gill, then, again by GI C Gk and (38), we would have
gk = 'lTGix), gl = 'lTGlx), contradicting the assumption that gk - gl:¢ O.
This proves (40).

Consequently, by (40) and (39), the polynomial

gk - gl = (x - gl) - (x - gk)

has the same sign as (x - gz) at t" ... , tHI , whence, by (39), it has at least l sign
changes, which completes the proof.

In the case when n = 2, the condition of Theorem 8 is also sufficient, as
shown by Theorem 7. We do not know whether this condition remains sufficient
ifn > 2.

THEOREM 9. Let E = l3 00 = the space of all triplets of real scalars
x={t"tz,t3}' endowed with the norm Ilxll=max"';i<;3It;J (i.e., E=C(Q),
where Q consists ofthree points). Let GI,GZbe the Cebysev subspaces GI = [zd,
Gz = [ZI,ZZ], where ZI = {I, 1, I}, Zz = {O,!, I}, and let gk E Gk (k = 1,2). There
exists an x E E satisfying (29), ifand only if the point g = g I - gz = {YI' Yz, Y3}
satisfies either

or
(41)

(42)

Proof Observe, first, that g = {Yl,Yz,Y3} E Gz = [ZI,ZZ] is of the form
OCIZI + OCzZz = {OC"OCI + (ocz/2),ocl + ocz}, with suitable oc"ocz; whence

(44)

(45)

there exist 1 ~ i <j ~ 3
with 7)i = -7)j = ollyll},

Yz E 'lTG~(O) = {y = {7)I, 7)z, 7)3} EEl 7)1 = -7)z = 7)3 = o'llyll},

Yz = !(YI + Y3)' (43)

Assume now that there exists an x E E satisfying (29). Then, by Theorem 1
and the "alternation theorem" for Cebysev systems in C(Q) spaces (see e.g.
[6], Ch. II, Theorem 1.4), there exist elements

YI E 'lTG~(O) = {y = {7J" 7)z, 7)3} EEl



ON A PROBLEM OF T. J. RlVLIN

where 0,0' = ±1, such that
g=g2 -gl = Y2 - Yl'

LetYI = {1] 11,1)21,'l7J1}. Then, by (46), we have

Y2 = {YI + 7] 11,Y2 + 7]21,Y3 + 1)31
},

whence, by (45),
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(46)

(47)

By (44), we have to consider the following three cases:
Case 1. 7]1 1 = -7]21 = oIIYIII. Then, from (47) and (43) we infer Yl = -Y2 =

(-Yl - Y3)/2, whence Yl = -!YJ' and thus (41) is satisfied.
Case 2. -1)2 1 = 7]31= ollYlll. Then from (47) and (43) we infer Y3 = -Y2 =

(-Yl - Y3)/2, whence Yl = -3Y3 and, thus, (41) is satisfied.
Case 3. 7)1 1 = -1)/ = SIIYIII. Then from (47 and) (43) we infer

1 -YI +Y3
7)1 =--2--

whence
12YI +2Y31 =2\1)21

\ ~211YIII =217]1 1
1 = IYi -Y31· (48)

Now, if Yl - Y3 ~ 0, then (48) implies Y3 - YI :( 2YI + 2Y3 ~ YI - Y3'
whence -tY3 :( YI :( -3Y3' and, thus, (42) is satisfied. On the other hand,
if Yl - Y3 :( 0, then (48) implies Yl - YJ :( 2Yl + 2YJ :( YJ - YI> whence
-3Y3:( YI :( -!r3' and, thus, (41) is satisfied.

Conversely, assume that g= {YbY2,Y3} satisfies (41) or (42), whence
12YI +2Y31:( I-YI +Y3!' Then, taking YI = {7)1

1,7]21,7]31
}, where

1_ -Yl +Y3 -2YI-2Y3
7)1 - 2 ' 7]21 = 2 7]31

= -ril!, (49)

and taking Y2 = {YI + 7]II,Y2 + 1)2
1,Y3 + 7)3

1
}, by (43) we shall have (44), (45)

and (46), whence, by Theorem 1, there exists an x E E saitsfying (29), which
completes the proof of Theorem 9.

Remark 7. If we regard the space E = [3 00 as C(Q), where Q = {OJ-, I}, and
ZI = {I, 1, 1}, Z2 = {O,-t, I} as the restrictions to Q of the functions ¢I(t) == 1,
and 4>lt) == t, respectively, then, by an easy computation, the condition of
Theorem 9 is equivalent to the following: g is the restriction to Q of a linear
function y(t) == at + b such that a f= 0, ! :( -bla:( l

We shall say that a pair {GJ> G2} oflinear subspaces ofa normed linear space
E has property (A2), if for every pair {gl,g2} with gk E Gk (k = 1,2), there exists
an x E E such that

(k= 1,2). (50)
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THEOREM 10. A pair {G h G2} of linear subspaces of E = 13
00

, with GJ C G2,

dim Gk = k (k = 1,2) has property (A2), if and only if GJ is a coordinate axis
and G2 is a plane passing through GJ •

Proof If {GJ ,G2} has property (A2), then, by Theorem 4, both GJ and G2
must be non-Cebysev subspaces, whence, by the classical theorem of Haar, GJ

must be contained in a coordinate plane, and G2 must be a plane passing
through a coordinate axis. Hence we have to consider the following two cases:

Case 1. GJ is the intersection of G2with the coordinate plane perpendicular
to the coordinate axis through which G2passes. TakegJ E GJ, andg2 E GJ\{gJ}'
Then a simple computation shows that GJ is "Cebysev with respect to the set
7TG~(g2)'" i.e., every x E 7TG~(g2) has g2 as unique element of best approximation
inGJ :

7TG1(X) = g2 (x E 7TG~(g2))' (51)

Consequently, there is no x E E satisfying (50), and, thus, {GJ,G2} does not
have property (A2).

Case 2. GJ is the coordinate axis through which G2 passes. Then, again a
simple computation shows that {GJ> G2} has property (A2), which completes
the proof of Theorem 10.
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